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ABSTRACT

The design and use of statistical pattern recognition
models can be regarded as one of the core research top-
ics in the segmentation of the left ventricle of the heart
from ultrasound data. These models trade a strong prior
model of the shape and appearance of the left ventricle
for a statistical model whose parameters can be learned
using a manually segmented data set (this set is com-
monly known as the training set). The trouble is that
such statistical model is usually quite complex, requir-
ing a large number of parameters that can be robustly
learned only if the training set is sufficiently large. The
difficulty in obtaining large training sets is currently a
major roadblock for the further exploration of statisti-
cal models in medical image analysis problems, such as
the automatic left ventricle segmentation. In this paper,
we present a novel semi-supervised self-training model
that reduces the need of large training sets for estimat-
ing the parameters of statistical models. This model is
initially trained with a small set of manually segmented
images, and for each new test sequence, the system re-
estimates the model parameters incrementally without
any further manual intervention. We show that state-of-
the-art segmentation results can be achieved with train-
ing sets containing 50 annotated examples for the prob-
lem of left ventricle segmentation from ultrasound data.

Index Terms— Segmentation of the left ventricle
of the heart, semi-supervised training, self-training,
deep neural networks, optimization algorithms

1. INTRODUCTION

The automatic segmentation of the left ventricle (LV)
of the heart is a major topic of research in the area
of medical image analysis. In practice, the automatic
LV segmentation represents an important tool in clini-
cal settings due to the following reasons [1] : 1) it can
increase patient throughput; and 2) it can reduce inter-
user variation in the LV delineation procedure. Tra-
ditionally, LV segmentation has been used as a test-
bed for assessing the performance of various method-
ologies because of the challenges of this application,
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which include: large appearance and shape variation,
low signal-to-noise ratio, edge dropout, and shadows.

One of the main techniques employed to solve this
problem is based on statistical pattern recognition ap-
proaches [2, 3, 4], which model the LV appearance and
shape using a set of manually annotated images (i.e.
the training set). This model is then used for build-
ing a classifier that detects and segments the LV from
ultrasound data. The models used in statistical pattern
recognition approaches usually contains from hundreds
to thousands of parameters, which can only be robustly
estimated with large training sets, a fact usually known
as thecurse of dimensionality. Actually, it is not un-
common that systems based on such approaches need
in the order of thousands of images, coming from sev-
eral different sources and annotated by different clini-
cians [3, 4, 5]. However, the acquisition of such large
training sets is a formidable task, demanding an ex-
tremely large amount of time from clinicians. The fact
that the majority of researchers working in this field
cannot have access to such large training sets results in
insufficient investigation of statistical pattern recogni-
tion models.

The machine learning and computer vision commu-
nities have faced similar issues over the last few years,
which resulted in the development of semi-supervised
learning techniques [6]. These learning methods use
both annotated and unannotated training data to esti-
mate the parameters of statistical models. The main
assumption is that samples belonging to the same class
tend to cluster together in the input space, and if a few
annotated examples are given, we can associate unan-
notated samples of the cluster with the label of anno-
tated samples in that same cluster, as shown in Fig. 1.

In this paper, we introduce a semi-supervised learn-
ing approach that initially trains a statistical model of
LV shape and appearance using a small training set.
This training set is used to build an initial classifier
that detects and segments the LV from ultrasound data.
Given a previously unseen test sequence, the system
uses the classifier to detect positive and negative hy-
potheses in each frame. These hypotheses are added to
the training set if the detection confidence is above a
certain threshold, and the model is then re-trained with
the updated training set. This algorithm is an instance
of the semi-supervised self-training learning approach.
Our approach is innovative in the sense that we do not



Fig. 1. Semi-supervised learning. The graph on the left
shows the classification problem where only a small subset
of the samples are labeled. The graph on the right displays
the result of semi-supervised learning, whereP (o|x) is the
probability of classo given pointx.

rely on a fixed set of unannotated images, which is a
common assumption that helps the self-training pro-
cess. Another innovation is that we relax the constraint
of including only the most confident hypothesis for re-
training the statistical models. The inclusion of less
confident results [7] is important to expand the volume
of positive and negative samples, which can lead to bet-
ter generalization capabilities (Fig. 2). Moreover, we
apply this semi-supervised learning approach in mod-
els based on deep learning architectures [8], which also
represents an innovation of this paper. Finally, we also
derive the formulation of the self-training approach.

2. SELF-TRAINING

Assume thatx ∈ ℜD denotes the feature vector repre-
senting the data (e.g., image),y ∈ ℜN represents the
annotation (e.g., manual LV segmentation), the hypoth-
esis confidence is measured with the posterior classifier
p(y|x), and the data density is represented byp(x).
Self-training methods assumes thatp(y|x) and p(x)
share parameters in order to train the classifierp(y|x)
such that annotation transitions can happen only at lo-
cations where the density ofp(x) is low [6]. Similar
approaches have been used successfully in other com-
puter vision problems [9, 7, 10, 11, 12, 13].

For the derivation of our algorithm, consider that
the set of training images is represented byX , andY
denotes the respective set of manual annotations. The
goal of the self-training is to estimate the parametersθ

of the classifierp(y|x,θ) using the annotated training
set{X ,Y} and a set of unannotated images{x̃i}i=1..K

along with the probabilities of producing the respective
annotations{ỹi}i=1..K given byp(ỹi|x̃i,θ). This is
summarized as [14]:

θ
⋆ = argmax

θ
P (Y|X ,θ)

∝ argmax
θ

log
∑

i

f(ỹi, x̃i)
p(Y, ỹi|x̃i,X ,θ)

f(ỹi, x̃i)
,

(1)

wheref(ỹi, x̃i) : ℜD × ℜN → ℜ has the constraints∑
i f(ỹi, x̃i) = 1 andf(ỹi, x̃i) ≥ 0. Using Jensen’s

inequality, we can find the following lower bound to

the objective function (1):

∑

i

f(ỹi, x̃i) log
p(Y, ỹi|x̃i,X ,θ)

f(ỹi, x̃i)
︸ ︷︷ ︸

Lower Bound

≤

log
∑

i

f(ỹi, x̃i)
p(Y, ỹi|x̃i,X ,θ)

f(ỹi, x̃i)

(2)

This lower bound is easier to maximize than the origi-
nal objective function (1). Therefore, we solve the fol-
lowing optimization problem:

θ
⋆ = argmax

θ

∑

i

f(ỹi, x̃i) log
p(Y, ỹi|x̃i,X ,θ)

f(ỹi, x̃i)

s.t.
∑

i

f(ỹi, x̃i) = 1, f(ỹi, x̃i) ≥ 0.

(3)

Taking the derivative of the Lagrangian with respect to
f(ỹi, x̃i), we find:

f(ỹi, x̃i) = p(ỹi|x̃i,θ). (4)

Hence, we can formulate an iterative algorithm
comprising the following expectation (E) and maxi-
mization (M) steps:

• E-step:

f (t)(ỹi, x̃i) = p(ỹi|x̃i,θ
(t−1)) (5)

• M-step:

θ
(t) = argmax

θ
Ef(t)(eyi,exi)

[
log p(Y, ỹi|x̃iX ,θ)

]
,

(6)

where the superscript(t) indicates the iteration index.
Therefore, we propose an iterative on-line EM al-

gorithm (see Alg. 1), where the goal is to maximize
(with respect toθ) and generalize (in the data space
x) the modelp(y|x,θ) with the constraint that there
are no transitions ofp(y|x,θ) on high density re-
gions of p(x). Both the generalization goal and the
constraint are achieved by incrementally incorporat-
ing in the training set examples(x̃i, ỹi) that produced
p(ỹi|x̃i,θ) ≥ γ, whereγ > 0 is a free variable. It
is important to note that similar self-training algo-
rithms use a fixed set of unannotated images, which
is different from our problem since the test images
are dynamically provided when a new sequence is
given for the system to process. Using a fixed set of
unannotated images, the heuristic for introducing new
“annotated” data is to select the cases{(ỹi, x̃i)} where
p(ỹi|x̃i,θ

(t−1)) are the highest. However, in our case
this heuristic does not work well because if we select
only the cases where the classifier is confident, the
system may generalize poorly because it can reject too
many true positive samples [7]. On the other hand, low
values ofγ can induce high false positive rates. There-
fore, finding the optimal value forγ requires the study



Fig. 2. Heuristic for selecting unannotated samples for one
of the classes represented byy. The thresholdγ is important
for the evolution of the semi-supervised learning since the
samplesex such thatp(ey = 1|ex) > γ will be labeled with
ey = 1, and otherwise will receive the labeley = 0. Notice
that the transition of the classifier becomes smoother as more
unlabeled data are labeled and used for new training rounds.

of such trade offs (see Fig. 2). In Sec. 5, we provide an
empirical study of the influence of the thresholdγ on
the performance of the system.

There are three important points to discuss in Alg 1.
The first point is thatθ(0) is obtained from the max-
imization of p(Y|X ,θ) using the annotated training
data only. Hereafter, we denote the training process to
estimateθ(0) as supervised, and the training forθ(t)

for t > 0 assemi-supervised(in the sense that unan-
notated samples will be incorporated in the learning
scheme). The second is that we select the samples to
be included in the training set by sampling a Gaussian
mixture model (7) and taking̃xi (with annotatioñyi)
with probability p(ỹi|x̃i,θ

(t−1)) × N (ỹi,Σ), where
N (µ,Σ) is the Gaussian probability density function
with meanµ and covarianceΣ (we setΣ to be10−3×I,

Algorithm 1 Iterative on-line EM
1: for t = 1:T do
2: E-STEP: Sample

( eY, eX ) ∼
X

i

p(eyi|exi, θ
(t−1)) ×N (eyi, Σ) (7)

3: eY = Y ∪ eY, eX = X ∪ eX
4: M-STEP:

maximize
θ

(t) p( eY| eX , θ)

subject to: (for all (eyi, exi) ∈ ( eY, eX ))

p(eyi|exi, θ
(t−1)) ≥ γ

X

i

p(eyi|exi, θ
(t−1)) = 1

(8)

5: if ‖θ(t) − θ
(t−1)‖2 ≤ ǫ then STOP iterations.

6: end for

Fig. 3. Original training image (top left) with the manual
LV segmentation in yellow line and star markers (top middle)
with the rectangular patch representing a canonical coordi-
nate system for the segmentation markers. The top-right im-
age shows the reference patch with the base and apical points
highlighted and located at their canonical locations within the
patch (these points are used to define the rigid transform of
the patch). The images on the second and third rows display
several positive and negative patches (respectively) usedto
train the rigid classifier.

with I the identity matrix). In this work, the number
of samples drawn from (7) is the same as the size of
the training set|{X ,Y}|. The third point, which we
provide more details in the next section, is that the
classifierp(y|x,θ) is based on deep learning methods.
Note that in Alg. 1,T denotes the maximum number
of iterations, which is set to100.

3. SEGMENTING THE LEFT VENTRICLE
USING DEEP LEARNING METHODS

The classifierp(y|x,θ) is based on deep neural net-
works [8], which is a type of deep learning classifier.
Deep neural networks have been recently explored by
Carneiro et al. [2], who showed that this classifier can
achieve state-of-the-art LV segmentation results with
400 annotated training images. This is remarkable be-
cause this training set has an order of magnitude less
training images than other segmentation approaches
based on discriminative classifiers [3, 4, 5]. Moreover,
contrary to boosting classifiers [9, 7, 11, 12, 13], the
adaptation of deep belief networks from a batch to an
on-line learning is straightforward.

Consider thaty = [sj]j=1..N represents the vector
of key-pointssj ∈ ℜ2 for the LV segmentation of an
ultrasound imageI. The annotated training set is de-
noted byD = {(I, ϑ,y)i}i=1..M , with LV imagesIi,
the respective manual annotationyi and the parameters
of a rigid transformationϑi ∈ ℜ5 (positionp ∈ ℜ2,
orientationξ ∈ [−π, π], and scaleσ ∈ ℜ2) that aligns
rigidly the annotation points to a canonical coordinate
system (see Fig.3). Our objective is to find the LV con-
tour with the following decision function:

y∗ = E [y|I, c = 1,D] =

∫

y

yp(y|I, c = 1,D)dy,

(9)
wherec = 1 is a random variable indicating the pres-
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Fig. 4. Intensity value profiles (from inside to outside the
LV) of the lines drawn perpendicularly to annotation points.
Those intensity profiles and respective LV contour location
are used to train the regressor of the non-rigid classifier.
Figure from [2].

ence of LV in imageI. Eq. 9 can be expanded using

p(y|I, c = 1,D) =
∫

ϑ

p(y|ϑ, I, c = 1,D)p(ϑ|I, c = 1,D)dϑ.
(10)

The first right-hand side term in (10), representing the
non-rigid part of the detection, is defined as follows:

p(y|ϑ, I, c = 1,D) =
∏

i

p(si|ϑ, I, c = 1,D), (11)

wherep(si|ϑ, I, c = 1,D) represents the probability
that the pointsi is located at the LV contour. Assuming
thatψ denotes the parameter vector of the classifier for
the non-rigid contour, we compute

p(si|ϑ, I, c = 1,D) =
∫

ψ

p(si|ϑ, I, c = 1,D, ψ)p(ψ|D)dψ.
(12)

In practice, we run a maximum a posteriori learning
procedure to estimate the model parameters [2], which
producesψMAP, meaning that in the integral (12) we
have p(ψ|D) = δ(ψ − ψMAP), where δ(.) denotes
the Dirac delta function. Also, instead of comput-
ing the probabilityp(si|ϑ, I, c = 1,D), we train a
regressor that indicates the most likely edge location
(Fig.4); this roughly means thatp(si|ϑ, I, c = 1,D) =
δ(si − sri (ϑ, I, c = 1,D)), with sri (.) being the regres-
sor result for theith contour point.

The second right hand side term in (10) represents
the rigid detection, which is denoted as

p(ϑ|I, c = 1,D) = Zp(c = 1|ϑ, I,D)p(ϑ|I,D)
(13)

whereZ is a normalization constant,p(ϑ|I,D) is a
prior on the parameter space, and

p(c = 1|ϑ, I,D) =

∫

ρ

p(c = 1|ϑ, I,D, ρ)p(ρ|D)dρ,

(14)
with ρ being the vector of classifier parameters, which
is estimated through a maximum a posteriori learning
procedure [2], producingρMAP. This means that in (14)
p(ρ|D) = δ(ρ− ρMAP).

Training set

Test set

Fig. 5. First images of a subset of the sequences used
as training and test sets.

4. SELF-TRAINING AND DETECTION
PROCEDURES

In this section, we first introduce the training and test
sets, the manual annotation protocol, and then we ex-
plain the self-training and detection procedures.

We have two sets of annotated data. The first set
contains 400 ultrasound images of the left ventricle of
the heart, which have been taken from 12 sequences
(12 sequences from 12 healthy subjects with no over-
lap), where each sequence contains an average of 34
annotated frames. Let us denote this set asD. This set
contains images using the apical two and four-chamber
views. The second set, used exclusively for testing,
contains two sequences of 80 images, where each se-
quence has 40 annotated images (2 sequences from 2
healthy subjects with no overlap). This set is denoted
by T with sequencesA andB. Note that there is no
overlap between subjects in setsD andT . We worked
with one cardiologist, who annotated all images in the
database (i.e., setsD andT ). The first image of two se-
quences fromD and two sequences fromT are shown
in Fig. 5.

For the manual annotation, the experts could use
any number of points to delineate the LV, but they had
to explicitly identify the base and apical points in order
for us to determine the rigid transformation between
each annotation and the canonical location of such
points in the reference patch (see Fig. 3). This vector
of points was then interpolated and the final contour
has a fixed number of pointsN with the same distance
between points [15].

For the training procedure, consider that the pa-
rameters of the discriminative classifierp(y|x,θ) pre-
sented in (1) consists of the parametersρ andψ of the
rigid (14) and non-rigid (12) classifiers, respectively, as
follows: θ = [ρ, ψ]. This classifier is initially trained
(supervisedtraining) with a subset ofD (in this paper,
we consider subsets of sizes{2, 6, 10, 20, 50, 100, 200}
that are formed by uniformly samplingD) to maximize
p(Y|X ,θ) [2], which buildsθ

(0) = [ρ
(0)
MAP, ψ

(0)
MAP] (for

each subset) in Alg. 1. Given a test sequence inT the
classifier is iteratively trained (semi-supervisedtrain-
ing) using the detection results from the previous time
instantt− 1, according to the description of Alg. 1.



Fig. 6. Convergence of the deep belief network parameters
for each one of the classifiers by computing the average of
the absolute difference of the weights between on-line learn-
ing iterations. The legend shows the number of images used
during supervised training of the classifier (using only theini-
tial training set).

For the training of the rigid classifier, we build an
image scale spaceL(p, σ) = N (p, σ) ∗ I(p), where
N (p, σ) is the Gaussian kernel,∗ is the convolution
operator,I(p) is the input image,σ is the image scale
parameter, andp is the image coordinate. Three sepa-
rate classifiers (14) are trained; one for each scaleσ =
{4, 8, 16} (the values and number of scales were deter-
mined based on cross validation of the initial training
set at iterationt = 0). The positive and negative train-
ing sets are defined based on a scale-dependent margin
mσ that increases by a factor of two after each octave.
Positives forL(p, σ) are randomly generatedinsidethe
range[ϑ − mσ/2, ϑ + mσ/2], and negatives are ran-
domly generatedoutsidethe range[ϑ −mσ, ϑ +mσ],
whereϑ is the parameter vector representing the rigid
transformation of the LV annotation. The non-rigid re-
gressor (12) is trained atσ = 4, where each training
sample is a line of 41 pixels of length extracted perpen-
dicularly from the LV contour points (see Fig. 4) and
the label to learn is the pixel index in{1, ..., 41} that
is closest to the LV contour. A cross-validation proce-
dure using20% of the initial training set for validation
is used to estimate the following parameters: 1) num-
ber of nodes per layer of regressor network; 2) number
of nodes per layer of the classifier networks; and 3) the
prior distributionp(ϑ|I,D) used in (13). Fig. 6 dis-
plays the evolution of the average of‖θ(t) − θ

(t−1)‖2

as a function of the iteration parametert for the rigid
classifier (14) at scalesσ ∈ {4, 8, 16} and non-rigid
classifier (12) atσ = 4. It is worth noticing that as the
number of initial training images increases, the conver-
gence of the semi-supervised training improves.

The detection procedure consists of running the
rigid classifier at scaleσ = 16 on theKcoarse ini-
tial hypotheses [2] (here,Kcoarse = 1000), by sam-
pling the random distributionp(ϑ|I,D) from (13).
From this detection, cluster the hypotheses (using k-
means algorithm) and select the topKfine clusters (here,
Kfine = 10) in terms of the best hypothesis within each
cluster [2]. Then run the rigid classifier at scaleσ = 8

on these hypotheses and repeat the procedure for scale
σ = 4. Finally, run the model represented by (10) over
the final topKfine hypotheses. Note that we substitute
the integral in (9) for an average over the topKfine

hypotheses weighted byp(y|I, c = 1,D). The final
segmentation contour points are then projected to the
principal component analysis (PCA) space built with
the respective subset of the training setD. The PCA
space transforms the 41-dimensional vector (represent-
ing the contour) to a 5-dimensional vector, which is
back projected onto the original contour space, produc-
ing a less noisy final contour [2].

5. EXPERIMENTS

In this section, we show empirical evidence of the im-
portance of two key parameters in the self-training Al-
gorithm 1, which are: 1)γ, and 2) the number of im-
ages used to estimateθ(0). We also compare quanti-
tatively the performance of the supervised and semi-
supervised methods. Furthermore, we compare our re-
sults to state-of-the-art LV detectors recently proposed
by Carneiro et al. [2], by Comaniciu et al. [3, 4] and
by Nascimento et al. [16]. The performance of the de-
tectors is assessed by comparing the contour estimates
with manual reference contours (see Sec. 4) using the
error measures defined below.

5.1. Error Measures

In this section we describe the following error measures
used for the evaluation of our algorithm: average error
(AV) [16], Hausdorff distance (HDF) [18], Hammoude
distance (HMD) (also known as Jaccard distance) [17],
and mean absolute distance (MAD) [19].

Let y1 = [s⊤i ]i=1..N , andy2 = [t⊤i ]i=1..N , with
si, ti ∈ ℜ2, be two vectors of points representing the
estimated and reference LV contours, respectively. The
smallest distance from a pointsi to the curvey2 is

d(si,y2) = min
j

||tj − si||2, (15)

which is known as the distance to the closest point
(DCP). The average error between the vectorsy1, y2

is

dAV(y1,y2) =
1

N

N∑

i=1

d(si,y2). (16)

The Hausdorff distance between both sets is defined as
the maximum of the DCPs between the two curves

dHDF(y1,y2) =

max
(
max
i

{d(si,y2)},max
j

{d(tj ,y1)}
)
.

(17)

The Hammoude distance is defined as follows [17]:

dHMD(y1,y2) =
#((Ry1 ∪Ry2) − (Ry1 ∩Ry2))

#(Ry1 ∪Ry2)
,

(18)
whereRy1 represents the image region delimited by the
contoury1 (similarly for Ry2 ), and#(.) denotes the
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Fig. 7. Error measures (17) and (18) as a function of the ini-
tial training set size (the error measure is denoted on the verti-
cal axis). Each curve represents the performance of the semi-
supervised training using different values forγ in Alg. 1.

number of pixels within the region described by the ex-
pression in parenthesis. The error measure MAD [20]
is defined as follows:

dMAD(y1,y2) =
1

N

N∑

i=1

‖si − ti‖2. (19)

Note that MAD is defined between corresponding
points (i.e., we do not use the DCP in this case).

Figure 7 usesT (A) (i.e., the sequenceA of the
test setT ) to show how the error measures (17) and
(18) vary as a function ofγ. Recall that each initial
training set is formed by samplingD uniformly to col-
lect subsets of sizesS = {2, 6, 10, 20, 50, 100, 200}.
The results in Fig. 7 are shown using the following
two curves: 1) the solid blue curve shows the aver-
age and standard deviation results for all initial train-
ing sets with less than 50 training images; and 2) the
dashed red curve displays the results using initial train-
ing sets with at least 50 training images. Notice that
for initial training sets with less than 50 training im-
ages,γ = 1 × 10−20 produces the smallest errors,
while for larger training sets,γ = 1 × 10−6 leads to
smaller errors. Therefore, in the experiments below,
we setγ = 1 × 10−20 for initial training sets with less
than 50 images andγ = 1 × 10−6, otherwise.

The final experiment shows how the semi-supervised
training method improves the performance of the sys-
tem initially trained with small training sets (this initial
system is labeled ’Supervised’). We also compare the
results with the performance of the following meth-
ods: 1) the supervised training method of Carneiro et
al. [2] that uses 400 training images; 2) the supervised
training approach by Georgescu et al. [4] that uses
thousands of training images; and 3) the model-based
method by Nascimento et al. [16] that does not use any
training set, but requires elaborate strategies for pro-
ducing the initial guess for the optimization function.
For this experiment, we build three different training
sets of sizes inS and show the results using mean
and standard deviation for each error measure (Fig. 8).
Compared to the supervised training, note that the pro-
posed semi-supervised learning reduces both the mean
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Fig. 8. Comparison of the performance of the proposed
semi-supervised method and the supervised approach using
the error measures (15)-(19) (each row represents one error
measure, and each column denotes a different test sequence).
We also show the detection results on the same test sets of the
supervised training methods [2] and [4] and the unsupervised
model-based method [16].

and the standard deviation for most of the error mea-
sures. In general, the semi-supervised approach starts
producing state-of-the-art results with initial training
sets containing 50 images, but notice that for sequence
T (A) the system shows competitive results with initial
training sets containing only 6 images. Figure 9 dis-
plays two cases showing the improvement provided by
semi-supervised learning.

6. DISCUSSION AND CONCLUSIONS

In this paper, we presented a novel semi-supervised
self-training methodology applied to the segmentation
of the left ventricle of the heart from ultrasound data.
The novelties reside in the formulation of the self-
training algorithm that keeps adding training images
as frames of a new test sequence are presented to the
system. This means that the initial set of annotated
and unannotated training images is not fixed, which



a) Supervised b) Semi-supervised

Fig. 9. Examples of the detection improvement provided
by the semi-supervised learning compared to the supervised
model trained with 50 images.

is a common assumption adopted by semi-supervised
learning approaches. For this reason, the selection cri-
terion to add unannotated images to the training set
becomes a critical aspect of the algorithm, and we
provide an empirical study on the selection of such
criterion. We also derived the formulation of our al-
gorithm. The results show that it is possible to have
state-of-the-art results with training sets containing 50
annotated training images. We plan to study better
selection criterion methods [11] to improve even more
the results presented in this paper.
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